
25,000). As G increases, the period of the oscillations decreases from 0.89 to 0.24 as G 
varies from 10,030 to 20,000. 

NOTATION 

x and y, Cartesian coordinates; 4, stream function;~ , velocity vortex; T, temperature; 
~, coefficient of dynamic viscosity; ~, coefficient of kinematic viscosity; ~ , coefficient 
of thermal conductivity; B, coefficient of volume expansion; e, temperature difference; G, 
Grashof's number; P, Prandtl's number; L and a, geometric parameters; X, coefficient of 
thermal diffusivity. The indices i and 2 refer to the upper and lower liquids, respectively. 

I. 

2. 

3. 
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APPLICATION OF THE PROJECTION-NET METHOD FOR SOLVING THE TRANSIENT 

HEAT-TRANSFER PROBLEM IN AN ANNULAR DUCT OF COMPLEX CONFIGURATION 

N. N. Davydova, A. A. Kochubei, 
and A. A. Ryadno 

UDC 536.24 

The influence of the geometrical characteristics of ducts on various parameters 
of the heat-transfer processes taking place in them is investigated. 

A topic of practical importance in the study of heat conduction and convective heat 
transfer is the influence of the geometrical characteristics of the investigated objects, 
ducts in particular, on various parameters of the processes involved [i]. To study the 
dependence of the temperature field on the geometrical characteristics and to obtain a re- 
alistic picture of the heat-transfer processes in a duct it is necessary to investigate 
simultaneously the processes of heat conduction in the wall and heat transfer in the fluid, 
i.e., to solve the problem in the conjugate formulation [2]. 

Analytical methods for the solution of conjugate transient (time-dependent) convective 
heat-transfer problems have not been adequately developed [2, 3], and their application is 
rendered difficult by the need to allow for the cross-sectional geometry and the boundary 
conditions specified on the outer surface of the wall. In our opinion, therefore, the pro- 
jection-net method is the most promising approach to the solution of the indicated problems; 
it combines the finite-element method (FEM) with the finite-difference method (FDM). 

The inherent capability of using irregular nets in the FEM permits the curvilinear 
boundaries of the computational domain to be effectively approximated, and the variational 
formulation of the problem makes it easy to take various types of boundary conditions into 
account. Another advantage of the FEM is the feasibility of forming the system of equations 
automatically; this is achieved by inspecting each element separately and applying a condi- 
tioning procedure that will ensure continuity of the function at the interelement boundar- 
ies. The FDM ensures the necessary speed and accuracy of the computations in analyzing the 
behavior of the heat transfer with time and in the direction of motion of the fluid. 
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Fig. 1. Cross-sectional domain of the duct: 
{ X" Y~ } 

S:,:[O<X~I; Y=7}; S3:{X=]; O < Y < y } ,  

We consider hydrodynamically stabilized laminar fluid flow in an annular duct having a 
complex cross section (Fig. i). We assume that the temperature field in the fluid flow is 
uniform at the initial time, the wall temperature at the entry is equal to the fluid temper- 
ature to at the initial time, the duct is thermally insulated at the exit, heat sources are 
absent in the duct, energy dissipation is negligible, and the thermophysical properties of 
the fluid and the material of the duct walls are constant. 

Then the transient heat-transfer process in the duct with allowance for heat conduc- 
tion in the wall is described mathematically in Cartesian coordinates by the equations 

a@ I 0~@i 32@i 02~  
0F-----o = &\,2 + OF2 Of" ~ ,, (1) 

(Fo x 2 y2 ) 2>0; z : > o ;  1 , ~ x ~ ? ~ ;  ., ~ o = 1 , 

O,(X, Y, 0, Fo )=O I(X, Y, Z, 0)=:0; (2) 

1 002 ~0--' ~'~@2 c9~0~ . I-- 3202 
k~ O F~- q- Wz Pe 5'---~ = OX - - - T  --  OF - - - - ~  OZ -----d-'~ (3) 

(Fo2>0; Z ~ 0 ;  0K~XG1; 0~Y~-~3,), 

O2(X, Y, O, Fo)= G(X, Y, Z, O)=-O; (4) 

O0,(X,  &,Y' Z' FO}tz~___ aO,,(X,o,zY, Z F o ) / z ~  = 0 ,  

where X = x/a, Y == g/a, Z = z/a, Fo = al"~l'a ~, le~ = a2/al, 7 = b/a, Pe ='~'a/a~. D i r i c h l e t ,  Neumann, 
or Cauchy boundary c o n d i t i o n s  can be s p e c i f i e d  on the ou te r  su r f ace  of the duct  wal l  (Sz).  
Conjugat ion c o n d i t i o n s  ("boundary cond i t i ons  of the  f o u r t h  kind")  a r e  s p e c i f i e d  a t  the  bound- 
a ry  between the f l u i d  and the wal l  ($2 U Sa). 

The problem (i), (3) with the uniqueness conditions (initial conditions, boundary condi- 
tions, and conditions at the entry and exit) is solved numerically by the projection-net 
method. We partition the cross-sectional domain of the duct into triangular simplex ele- 
ments [4], the application of which specifies a linear approximation of the temperature 

T ~) = D'(~)I {T} (5) 
on each finite element [5]. 

Using the procedure of the Bubnov--Galerkin method for each element and the conditioning 
procedure described by Mitchell and Wait [6], we obtain the system of partial differential 
equations 

0{O} q_[B] 0{O} _[C] 02 {6}} 
[A] 0 Fo O ~  OZ----- f -  -i- ID] {O} q- {F}. (6) 

We solve the system (6) by the FDM, using the scheme of Saul'ev [7]. 

The results of calculating the temperature at the nodal points of the elements have been 

used as the basis for investigating the heat-transfer process for Pe =-95, Bi = ale = 50, 
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Fig. 2. Temperature distribution at 
the fluid--wall boundary for Fo = 0.08. 
a) y = 0.5; b) 1.2; i) Z = 0.i; 2) 0.2; 
3) 0.4. 

k a = 0.02; k X = 0.025 and for various configurations of the duct cross section: a) 71=~2; 

The objective of the numerical experiments was to study the influence of the configura- 
tion of the outer surface $I of the wall on the temperature field in the duct. 

Figure 2a shows the distribution curves of the dimensionless temperature at the fluid-- 

wall boundary (S 2 0 $3) in the case where S1 is described by the equation for an ellipse 
(?~:?, = 0.4; ~ :?~--? = 0.3; dashed curves) and the equation for a circle (~i = ~ = 2; ~ = 1.5; 
solid curves). Cauchy boundary conditions are specified on the outer surface of the duct 
wall. 

It is evident from the figure that if 71~=72, the values of the temperature are tenfold 
greater on the average at the boundary $2, because the wall thickness in the Y direction is 
smaller than for YI = •2. A smoother temperature variation is observed when the rate of 
change of the wall thickness along the coordinate axes is insignificant. 

We have also investigated the temperature distributions in the duct when the equation 
for the outer surface of the wall is left unchanged, but the other geometrical characteris- 
tics of the duct are varied. If the wall thickness B is decreased (increased) for YI = Y2, 
the temperature at the fluid-wall boundary will increase (decrease). For example, reducing 
8 by one half causes the temperature to increase on the average 30 fold at the boundary $2 
and 12-fold at $3 (Fig. 2a: YI ffi Y2 = 1.25; 6 = 0.75; dot--dash curves). 

A variation of the temperature at the fluid-wall boundary also takes place when the 
ratio y between the sides of the rectangle is varied. Figure 2b shows the distribution of 
the dimensionless temperature at the fluid-wall boundary for a 2.4-fold increase in 7 
( ? 1 = ~ ' 2 = 2 ;  [} = 0 . 8 ) .  

It is evident from the figure that the temperature increases on the average 21-fold at 
the boundary S= and twofold at $3. 

These results show that the temperature fields in the wall and in the fluid flow are 
interrelated and the configuration of the duct cross section has a strong influence on the 
temperature distribution, further corroborating the need to investigate the heat-transfer 
process in ducts in the conjugate formulation of the problem. 

On the basis of the projection-net method we have developed a package of programs that 
can be used to investigate heat transfer in ducts of practically any cross-sectional config- 
uration, to analyze the influence of time dependence, the geometry and properties of the 
material of the wall, and other parameters on the heat-transfer process, and to solve prob- 
lems with allowance for energy dissipation in the flow, in the presence of heat sources, 
etc. 

In addition, the program package can be used for heat-transfer computations aimed at 
determining the duct configuration in order to impart predetermined characteristics to the 
process, and in the first approximation it can serve as a "heat designer" in the design of 
heat-exchange equipment. 
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NOTATION 

8,,8~, X, Y, Z, Fo, dimensionless variables: temperatures, coordinates, and time; a, b, 
sides of rectangle; =J, a2,%1,%2, thermal diffusivities and thermal conductivities of wall ma- 
terial and fluid; YI, Y2, dimensionless semiaxes of ellipse; ~, thickness of duct wall in Y 
direction; Pe, Bi, P~clet and Blot numbers; Wz(X, Y) dimensionless velocity profile of fluid 
flow in duct. 
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FUNDAMENTALASPECTS OF THE DEVELOPMENT OF ALGORITHMS FOR MATHEMATICAL 

MODELING OF THE THERMAL MODE OF THIN-WALLED STRUCTURES 

V. S. Khokhulin UDC 536.24.02 

Specialized algorithms are proposed for computation of the temperature fields in 
thin-walled structural elements. 

Among the universal methods of mathematical modeling of the thermal mode of a structure 
should be those based on solving systems of heat-conduction equations [I, 2]. Application 
of the method of "skeleton" structures [2] permits computing the temperature fields in struc- 
tures of practically any geometry, Its universality lies in the fact that the "skeleton" 
structure combines the thermal models of the individual elements into a single generalized 
mathematical model. Moreover, it can also be used to compute the temperature fields in ele- 
ments of complex geometry. For this, the element is partitioned into separate subdomains of 
canonical shape whose thermal state is described by the traditional heat-conduction equations. 
However, such a breaking down of the structural elements results in excessive awkwardness 
of the mathematical model and degrades its graphic appearance and convenience of application. 
Hence, the construction of typical methods and recipes for the solution of problems of analyz- 
ing temperature fields in groups of structural elements or individual elements of complex 
shape possessing definite characteristic criteria which would permit expansion of the domain 
of application of the method of "skeleton" structures is urgent. This paper is devoted to 
the development of algorithms to solve this problem. 

The paper [3], in which an algorithm is proposed for the computation of temperature 
fields in thin-walled structural elements having the longitudinal coordinate z common for all 
plates, might be an example of the development of specialized algorithms. 

Let us first examine the problem of computing the thermal state of the plates displayed 
in Fig. la. The temperature distribution in these plates is described by using the following 
system of heat-conduction equations 
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